
JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS                                Vol. 17, No. 5-6, May – June 2015, p. 877 - 883 

 

Computing topological polynomials of certain 

nanostructures 
 

 

A. Q. BAIG
a*

, M. IMRAN
b
, H. ALI

a
, S. U. REHMAN

a
 

a
Department of Mathematics, COMSATS Institute of Information Technology, Attock, Pakistan 

b
Department of Mathematics, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), 

Sector H-12, Islamabad, Pakistan 

 

 

Counting polynomials are those polynomials having at exponent the extent of a property partition and coefficients the 
multiplicity/occurrence of the corresponding partition. In this paper, Omega, Sadhana and PI polynomials are computed for 
Multilayer Hex-Cells nanotubes, One Pentagonal Carbon nanocones and Melem Chain nanotubes. These polynomials were 
proposed on the ground of quasi-orthogonal cuts edge strips in polycyclic graphs. These counting polynomials are useful in 
the topological description of bipartite structures as well as in counting some single number descriptors, i.e. topological 
indices. These polynomials count equidistant and non-equidistant edges in graphs. In this paper, analytical closed formulas of 
these polynomials for Multi-layer Hex-Cells MLH (k, d) nanotubes, One Pentagonal Carbon CNC5 (n) nanocones and Melem 
Chain MC (n) nanotubes are derived. 
 
(Received March 2, 2015; accepted May 7, 2015) 

 

Keywords: Counting polynomial, Omega polynomial, Sadhana polynomial, PI polynomial, MLH (k, d) nanotubes, CNC5 (n) nanocones,  

            MC (n) nanotubes 

 

 

 

1. Introduction and preliminary results 
 

Mathematical chemistry is a branch of theoretical 

chemistry in which we discuss and predict the chemical 

structure by using mathematical tools and doesn’t 

necessarily refer to the quantum mechanics. Chemical 

graph theory is a branch of mathematical chemistry in 

which we apply tools from graph theory to model the 

chemical phenomenon mathematically. This theory 

contributes a prominent role in the fields of chemical 

sciences. 

Carbon nanotubes (CNTs) are types of nanostructure 

which are allotropes of carbon and having a cylindrical 

shape. Carbon nanotubes, a type of fullerene, have potential 

in fields such as nanotechnology, electronics, optics, 

materials science, and architecture. Carbon nanotubes 

provide a certain potential for metal-free catalysis of 

inorganic and organic reactions. 

Counting polynomials are those polynomials having at 

exponent the extent of a property partition and coefficients 

the multiplicity/occurrence of the corresponding partition. 

A counting polynomial is defined as: 

 
k

k

xkGmxGP ),(=),(              (1) 

Where the coefficient ),( kGm  are calculable by various 

methods, techniques and algorithms. The expression (1)  

was found independently by Sachs, Harary, Mili c , 

Spialter, Hosoya, etc [5]. The corresponding topological 

index )(GP  is defined in this way:  

  

kkGmxGPGP
k
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A moleculer/chemical graph is a simple finite graph in 

which vertices denote the atoms and edges denote the 

chemical bonds in underlying chemical structure. This is 

more important to say that the hydrogen atoms are often 

omitted in any molecular graph. A graph can be represented 

by a matrix, a sequence, a polynomial and a numeric 

number (often called a topological index) which represents 

the whole graph and these representations are aimed to be 

uniquely defined for that graph. 

Two edges uve =  and xyf =  in )(GE  are said 

to be codistant, usually denoted by e  co  f , if  

 

),(=),( vyduxd  

 

 and  

1),(=1),(=),(=),(  vyduxduydvxd  

 

The relation “ co " is reflexive as e  co  e  is true for 

all edges in G , also symmetric as if e  co  f  then f  

co  e  for all )(, GEfe   but the relation “ co " is not 

necessarily transitive. Consider  

 

}:)({=)( ecofGEfeC   

 

If the relation is transitive on )(eC  also, then )(eC  

is called an orthogonal cut “ co " of the graph G . Let 
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uve =  and xyf =  be two edges of a graph G , which 

are opposite or topological parallel, and this relation is 

denoted by fope . A set of opposite edges, within the 

same face or ring, eventually forming a strip of adjacent 

faces/rings, is called an opposite edge strip ops, which is a 

quasi-orthogonal cut qoc (i.e. the transitivity relation is not 

necessarily obeyed). Note that “ co " relation is defined in 

the whole graph while “ op " is defined only in a face/ring. 

In this article, G  is considered to be simple 

connected graph with vertex set )(GV  and edge set 

)(GE , ),( kGm  be the number of ops of length k , 

|)(=| GEe  is the edge cardinality of G . 

The omega polynomial was introduced by Diudea et al. 

in 2006  on the ground of op strips. The Omega 

polynomial is proposed to describe cycle-containing 

molecular structures, particularly those associated with 

nanostructures. 

Definition 1.1. [6] Let G  be a graph, then its Omega 

polynomial denoted by ),( xG  in x  is defined as  
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k
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The Sadhana polynomial is defined based on counting 

opposite edge strips in any graph. This polynomial counts 

equidistant edges in G . 

Definition 1.2. [8] Let G  be a graph, then Sadhana 

polynomial denoted by ),( xGSd  is defined as  

 
ke

k

xkGmxGSd  ),(=),(  

The PI polynomial is also defined based on counting 

opposite edge strips in any graph. This polynomial counts 

non-equidistant edges in G .  

Definition 1.3. [8] Let G  be a graph, then PI 

polynomial denoted by ),( xGPI  is defined as 
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Yazdani et al. determined Padmakar-Ivan (PI) 

polynomials of ],2[4765 qpCCHAC  nanotubes. 

Theorem 1.0.1. [21] Let G  be the 765 CCHAC  

nanotube, then PI polynomial of G  is  
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Ashrafi et al. computed Sadhana polynomial of 

V-phenylenic nanotube and nanotori.  

Theorem 1.0.2. [1] Let G  be the graph of 

V-phenylenic nanotube, then Sadhana polynomial of G  is  
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All nanotubes are allotropes of carbon and are a type of 

fullerene. Ghorbani et al. computed Omega and Sadhana 

polynomials of an infinite family of fullerene nC10 , 

10n . 

Theorem 1.0.3. [11] Consider the fullerene graph 

nC10 , 10n . Then the Omega and Sadhana polynomials 

of nC10  are computed as follows: 

 

 ),( 10 xC n  

{
 
 

 
 

cmxxx n

n

0.35101010 323   n|2

32

3

2

3

3 105510 



 n

nn

xxxx  2 ∤ 𝑛

 

 

),( 10 xCSd n  

{
 
 

 
 

cmxxx n

n

n 0.35101010 3142

29

315    n|2

,105510 3142

329

2

329

315 



  n

nn

n xxxx  2 ∤ 𝑛

 

 

 

The preceding results are used to compute their 

corresponding topological indices which provides a good 

model correlating the certain physico-chemical properties 

of these carbon allotropes.  

 

 
2. Results and Discussion 
 

In this paper, we compute Omega, Sadhana and PI 

polynomials for Multilayer Hex-Cells MLH (k, d) 

nanotubes, One Pentagonal Carbon CNC5 (n) nanocones 

and Melem Chain MC (n) nanotubes. For further study of 

these polynomials their topological indices and 

polynomials of various nanotubes, consult [3, 4, 7, 10, 

12-18, 20]. These polynomials are used to predict various 

physico-chemical properties of certain chemical 

compounds. 

 

2.1. Multilayer Hex-Cells MLH (k, d) nanotubes 

 

In this section, we compute Omega, Sadhana and PI 

polynomials for MLH (k, d) nanotubes. A Hex-Cell 

nanotube [19] with depth d is denoted by HC (d) and can be 

constructed by using units of hexagon cells, each of six 
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vertices. A Hex-Cell nanotube with depth d has d levels 

numbered from 1 to d, where level 1 represents the 

innermost level corresponding to one hexagon cell. Level 2 

corresponds to the six hexagon cells surrounding the 

hexagon at level 1. Level 3 corresponds to the 12 hexagon 

cells surrounding the six hexagons at level 2 as shown in 

Figure 1. Each level i has Vi vertices, where Vi = 6(2i - 1) 

and the total number of vertices in a Hex-Cell nanotubes 

HC (d) is V = 6d
2
. The Multilayer Hex-Cell (MLH) is a 

modular interconnection network that consists of layers of 

identical Hex-Cells nanotubes connected together in 

hierarchical fashion as shown in Figure 2. The MLH is 

denoted by MLH (k, d), where k denotes the layer number, 

and d denotes the depth of the identical Hex-Cell. This 

family of nanotubes is usually symbolized as MLH (k, d). 

We have |V (MLH (k, d))| = 6kd
2 

and |E (MLH (k, d))| = 

6(2k +
 

1

1=

k

r

2(k + r)) + 6kd
2
. 

 

 

Fig. 1. (a) HC (one level) (b) (two levels) (c) (three levels). 

 

Theorem 2.1.1. The Omega polynomial of MLH (k, d) 

nanotubes ∀ dk, ∈ ℕ, is as follows: 

 

Ω 𝑀𝐿𝐻(𝑘, 𝑑) = 6((2𝑘 − 1)

+ 2
1

1=

k

r
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1

1=

k

r

 2(k+r))

+ (k − 1)x6kd
2
).  

 

Proof: Let G be the graph of MLH (k, d) nanotubes ∀ 

dk, ∈ ℕ. Table 1 shows the number of co-distant edges in 

G. By using table 1 the proof is mechanical. 

 

 Fig. 2. MLH (2, 2). 

 

 
Table 1. Number of co-distant edges of MLH (k,d) 

nanotube. 
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qoc’s 

Types of 
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No of co-distant 

edges 

No of qoc 
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Now we apply formula and do some calculation to get our 

result. 
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Now we compute Sadhana polynomial of ),( dkMLH  nanotube   dk, ∈ ℕ. Following theorem 
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shows the Sadhana polynomial for this family of nanotubes.  

Theorem 2.1.2. Consider the graph of ),( dkMLH  
nanotube   dk, ∈ ℕ. Then its Sadhana polynomial is as 

follows:  
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Proof. Let G  be the graph of ),( dkMLH  

nanotube   dk, ∈ ℕ. The proof of this result is just 

calculation based. We prove it by using table 1 . We know 

that  
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Next we compute PI polynomial of ),( dkMLH  

nanotube. Following theorem explains the PI polynomial of 

this family of nanotubes.   

Theorem 2.1.3. Consider the graph of ),( dkMLH  

nanotube   dk, ∈ ℕ. Then its PI polynomial is as 

follows: 
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Proof. Let G  be the graph of ),( dkMLH  nanotube 

  dk, ∈ ℕ. We prove it by using table 1. We know that  
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2.2 One pentagonal carbon )(5 nCNC  for 3n   

    nanocones 

 

In this section, we determine Omega, Sadhana and PI 

polynomials for )(5 nCNC , 3n  nanocones. One 

pentagonal carbon nanocones, Fig. 3, originally discovered 

by Ge and Sattler in 1994  [9]. These are constructed from 

a graphene sheet by removing a 
o60  wedge and joining 

the edges produces a cone with a single pentagonal defect at 

the apex. In )(5 nCNC  nanocone, the number of vertices 

and edges are 
25n  and 1)(3

2

5
nn  respectively. 

 

 
 

        Fig. 3. A representation of (7)5CNC  nanocone. 

 

Now we compute Omega polynomial of )(5 nCNC  

nanocone.  

Theorem 2.2.1. The Omega polynomial of 

)(5 nCNC  nanocone for 3n  is as follows:  

1))(5(=)),(( 1
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  Proof. Let G  be the graph of one pentagonal carbon 

)(5 nCNC  for 3n  nanocone. Table 2  shows the 

number of co-distant edges in G . By using table 2 , the 

proof is straightforward.   

 

Table 2. Number of co-distant edges of )(5 nCNC  for  

3n  nanocone. 

 

Types 

of qoc 

   Types 

of edges 

  No. of co-distant edges    No. of 

qoc 
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Now we apply formula and do some easy calculation to 

get our result.  
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In the following theorem, the Sadhana polynomial of 

)(5 nCNC  for 3n  nanocone is computed.   

Theorem 2.2.2. The Sadhana polynomial of one 

pentagonal carbon )(5 nCNC  for 3n  nanocone is as 
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follows:  
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Proof. Let G  be the graph of one pentagonal carbon 

)(5 nCNC  for 3n  nanocone. By using table 2  the 

proof is easy. Now we apply formula and do some 

computation to get our result.  

1)(21)(3
2

5)(

2

1=

1)(3
2

5

1)(3
2

5

555=),(












nnn
in

n

i

nn
nnn

xxxxGSd

 

1)3)(5(
2

3)(

2

1=

1)(3
2

5

7)(15
25(












nn
in

n

i

nn
n

n

xxx  

  

PI polynomial of one pentagonal carbon )(5 nCNC  

for 3n  nanocone is computed in [2].  

 

2.3 Melem chain )(nMC  for n∈ ℕ 

 

In this section, we compute Omega, Sadhana and PI 

polynomials for melem 

)(2,5,8 triazinestritriamino   

3276 )(NHNC  chain nanotube. Melem was obtained as a 

crystalline powder by thermal treatment of different less 

condensed HNC   compounds (e.g., melamine 

3233 )(NHNC , dicyandiamide 
424 NCH , ammonium 

dicyanamide ])([ 24 CNNNH , or cyanamide 
22CNH , 

respectively) at temperatures up to Co450  in sealed 

glass ampules. The vertices and edges in Melem chain are 

418 n  and 321 n  respectively. Now we compute 

Omega polynomial of melem chain )(nMC  nanotube.  

  

 

 
 

Fig. 4. A representation of (4)MC  nanotube. 

 

Theorem 2.3.1. The Omega polynomial of nanotube 

)(nMC  for n∈ ℕ is equal to:  

 
175)(6=)),((  nxnxnMC  

   

Proof. Let G  be the graph of )(nMC  nanotube for 

n∈ ℕ. Table 3  shows the number of co-distant edges in 

G . By using table 3  the proof is straightforward.  

 

Table 3. Number of co-distant edges of )(nMC  nanotube. 

  

   Types of qoc  Types of edges  No. of co-distant edges No. of qoc 

1C   
1e     17 n         13 n  

2C   2e     17 n         13 n  

3C   3e     17 n           3  

   

Now we apply formula and do some easy calculation to 

get our result.  
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In the following theorem, the Sadhana polynomial of 

)(nMC  nanotube is computed.   

Theorem 2.3.2. The Sadhana polynomial of )(nMC  

nanotube for n ∈ ℕ is as follows: 

  
1)2(75)(6=)(,  nnxSd

 
Proof. Let G  be the graph )(nMC  nanotube for 

n∈ ℕ. By using table 3  the proof is easy. Now we apply 

formula and do some computation to get our result.  
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Now we compute PI polynomial of )(nMC  

nanotube for n ∈ ℕ. Following theorem shows the PI 

polynomial for this finite family of nanotubes.   

Theorem 2.3.3. Consider the graph of )(nMC  

nanotube for n∈ ℕ. Then its PI polynomial is as follows:  

 

1)2(72 5)41(42=),(  nxnnxGPI  

   

Proof. Let G  be the graph of )(nMC  nanotube for 

n∈ ℕ. The proof of this result is just calculation based. We 

easily prove it by using table 3 . We know that  
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3. Conclusion and general remarks 
 

In this paper, three important counting polynomials 

called Omega, Sadhana and PI are studied. These 

polynomials are useful in determining Omega, Sadhana and 

PI topological indices which play an important role in 

QSAR/QSPR study. We computed these polynomials for 

),( dkMLH  nanotube, )(5 nCNC  nanocone and 

)(nMC  nanotube.  
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